
 International Journal of Computer Trends and Technology Volume 71 Issue 9, 15-21, September 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I9P103 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Important Considerations for Maximizing Performance

and Ensuring Uninterrupted Operation with the

Cassandra Database

Venugopal Thati

VP IT Enterprise Architect, FL, USA.

Corresponding Author : vthati86@gmail.com

Received: 11 July 2023 Revised: 23 August 2023 Accepted: 06 September 2023 Published: 27 September 2023

Abstract - In the world of digital transformation and applications made available globally by enterprises for their customers, it

is becoming very important to keep systems online 24/7, incurring no downtime. Moreover, these systems must scale as the

demand grows and perform optimally to meet business needs. One key component in any enterprise application is the

database, and it is a challenging component to scale easily compared to the front-end web apps or backend services where no

state is maintained. There has been tremendous growth over the last decade in distributed NoSQL databases, which promise to

solve availability, scalability, and reliability challenges. Moreover, several top-tier companies successfully implemented

solutions for their businesses using these distributed databases, and some of these companies are contributing to introducing

more features in these databases. This article covers important facets of achieving zero unscheduled downtime, fault tolerance,

high availability, and scalability with Cassandra. Cassandra can be self-managed or used as a managed service from public

cloud offerings. Insights shared in the article are from the research and practical experiences in self-managing the

geographically distributed cluster and designing applications to use the Cassandra database efficiently.

Keywords - Availability, Cassandra, Distributed databases, NoSQL, Scalability.

1. Introduction
Distributed NoSQL databases play a vital role in the

modern digital application landscape to solve challenges

associated with data growth, increasing user base across the

globe, and providing reliable services to customers. Reliable

IT systems are the backbone of any enterprise company to

achieve its goals in delivering solutions to its customers in

this competitive era. One of the most critical components in

any IT application landscape is the database, and enterprises

cannot afford it to go down for the normal application

operation. Traditionally, single-server relational databases

have fulfilled business needs, but scalability has always been

challenging. With the growth of distributed databases,

especially NoSQL databases, enterprises can now build

solutions for the global user base without concern about

availability and scalability challenges.

There are tens of distributed databases that deliver

various benefits, and architects can choose one of these

databases based on the application requirements. This article

discusses the Apache Cassandra database, invented at

Facebook [4] and made available for the open-source

community.

There has been tremendous community growth around

Apache Cassandra over the last decade, and a lot of top-tier

companies [2] use this database to reap the benefits it offers.

Cassandra can be self-hosted and managed by IT or used as a

managed service from cloud offerings. Setting up a self-

hosted Cassandra database requires infrastructure expertise,

an understanding of advanced configurations and enterprise

vendor support sometimes. However, using the Cassandra

database in an enterprise still requires operations expertise,

an understanding of key data modeling concepts and proper

application design to use the database efficiently.

Much knowledge is available on the market for the

initial infrastructure set up of the Cassandra database.

However, the responsibility of designing a data model,

designing applications, and operating it efficiently is still the

responsibility of enterprises building applications for their

customers. There is still a research gap in understanding

important topics to achieve better performance with the

Cassandra database, design data models, and choose proper

client configurations to benefit from high availability. This

article addresses the research gap by explaining important

topics and how they affect the performance and availability

of the Cassandra database and explains test results to show

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Venugopal Thati / IJCTT, 71(9), 15-21, 2023

16

that configurations explained in the article indeed help with

improving performance and designing applications for high

availability with the Cassandra database.

2. Literature Review
Apache Cassandra database has been around for more

than a decade. Several research articles were written about

the Apache Cassandra overview [1], applications of

Cassandra [8][9][10], comparisons with other databases

[5][6][7], and several books were written about advanced

configurations and how to operate the cluster as well.

However, there is still a lack of research from the application

design and the enterprise usage perspective. Understanding

the architecture and all the configurations and applying that

knowledge in production takes a considerable amount of

time, and enterprises often learn these important levers to

tune after deploying the solution to production. This article

provides insights on these important topics and how to

address them before deploying the solution in production and

achieving high availability and zero unscheduled downtimes.

3. Cassandra Architecture Overview
Cassandra is a distributed NoSQL database and a wide-

column store [16]. It has a masterless architecture; no

dedicated nodes act as masters, and all nodes in the cluster

service requests. Cassandra can scale up to thousands of

nodes horizontally using commodity hardware. Data from

these nodes can be replicated geographically across multiple

data centers. It replicates data to the node within the data

center and across data centers as well. Cassandra’s data

model should be defined based on how the data is going to

be queried from tables. Partition key is an important concept

in Cassandra's data model, which will be explained in the

later sections. The architecture discussion of distributed

databases is incomplete without discussing the CAP theorem

[3].

CAP refers to consistency, availability, and partition

tolerance. None of the distributed databases provide all three

guarantees. Cassandra prefers the availability and partition

tolerance aspects of the CAP theorem. Cassandra prefers

availability over consistency and provides partition tolerance.

This is the reason Cassandra can be made highly available

without incurring downtime. Cassandra writes data to the

commit log (disk) first and then to Memtable, an in-memory

data structure. Data from Memtables is flushed to the disk as

SSTables once the Memtable threshold is reached or the

draining process is executed explicitly. SSTables are the

destination where the data lives in Cassandra. Commitlogs

are useful in the event of a node crash or restart, as data from

the commit log is replayed at the start of the node. Cassandra

also provides easy backup and restore options in case of data

recovery situations. A deeper understanding of Cassandra's

architecture can help achieve scalability, availability, and

resiliency with effort.

4. Important Considerations
This section describes important considerations in detail.

4.1. Partition Key

The partition key is an important concept in the entire

Cassandra data modeling. Cassandra distributes data across

the cluster using the hash of the partition key. One partition

can have multiple rows. The clustering key allows us to

contain multiple rows within a partition—combining the

partition key and clustering key forms the primary key. The

partition key should be chosen carefully to disperse data

across the cluster. Otherwise, it can lead to hot partitions that

can overload individual nodes in the cluster and affect the

cluster's performance. One of the key things that should

never be wrong when using Cassandra is the partition key.

4.2. Replication Factor

Cassandra replicates data across multiple nodes, and the

replication factor defined on the keyspace dictates how many

data replicas are maintained in the cluster. The higher the

replication factor, the more data is available on more nodes,

but it contributes to the disk growth quickly and demands

adding more nodes quickly. The minimum replication factor

should be 3 for any production application, and anything

higher adds an advantage, but there is a cost associated with

it. The minimum recommendation is 3 because there is less

probability that 3 nodes in a cluster will be down

simultaneously. Keyspace should be configured with

NetworkTopologyStrategy for the replication to work [11].

4.3. Multiple Data Centers

Cassandra excels at replicating data seamlessly across

multiple data centers. All data centers in Cassandra contain a

set of nodes, and these data centers form one cluster.

Datacenters can be in one geographic region or

geographically distributed across different continents if

network connectivity exists between these data centers. All

data centers in the Cassandra cluster share the same schema,

and data center replication settings are configured at the

keyspace level. Having more than one data center is very

important for the production cluster as it is easy to fail over if

the current data center used by an application goes down for

some unexpected reason.

4.4. Writes

Because of the masterless architecture of Cassandra, any

node in the data center can take a request, which will become

the coordinator node for a read or write. The coordinator

node is responsible for sending writes to replica nodes in the

cluster synchronously to some nodes and asynchronously to

some other nodes, and this ratio of nodes is determined by

the consistency level used while writing data from an

application. Data replication also happens to remote

datacenters and depends on the consistency level used for

writes. Applications should be designed to reduce the latency

of writes, which is possible if the replication to remote

Venugopal Thati / IJCTT, 71(9), 15-21, 2023

17

datacenters happens asynchronously. If the replica node is

not available at the time of writing, the coordinator node

creates hint files, and these hints are kept for 3 hours on the

coordinator node. This is why Cassandra is highly available

for writes, as it continues to accept even though one of the

primary replica nodes is down. If it takes over 3 hours to

return the node, a repair operation should be done to replicate

the missed data.

4.5. Reads

During reads, Cassandra makes the best effort to provide

the latest available data from the replica nodes. As mentioned

about the CAP theorem earlier, Cassandra prefers availability

over consistency. The client may not receive the latest data if

any of the replicas are down, which had the latest data. This

is the reason Cassandra is highly available for reads as well.

Cassandra read queries must always include the partition

key. That way, the coordinator node calculates the hash and

directs the query to the replica node where the data lives.

There is an ALLOW FILTERING option to be used in the

query without mentioning the partition key, which should

never be used in production. With this option, the

coordinator fetches data from all nodes for that table and

applies the filtering to return the data back. If the table is big,

these types of read queries affect the stability of the cluster.

There is an option to create secondary indexes in Cassandra,

but there will be a hit on the performance during writes as

these indexes need to be maintained. These secondary

indexes are local to each node, i.e., data available on the

node is indexed locally, which means a read query using a

secondary index should traverse all nodes to find the data,

which can introduce latency. Suppose consumers need to

read data after a few seconds, and there is no application

requirement to read after write on non-partition key columns.

In that case, the CDC option can be considered, which will

replicate data from Cassandra to other databases such as

Elasticsearch OpenSearch for search queries. This CDC

option enables many other use cases for data consumers, and

Cassandra continues to excel at providing write throughput

and reads using partition keys for the optimal performance of

the cluster.

4.6. Consistency Level

The replication factor on the keyspace and the

consistency level chosen for writes and reads are key aspects

in achieving high availability. Cassandra has several

consistency levels [11] that can be tuned based on the

application requirement. Assuming the replication factor is

set to 3 and If LOCAL_QUORUM is used as the consistency

level for writes, 2 nodes (N/2 + 1) should accept writes

synchronously, and another node will get the write

asynchronously. LOCAL_QUORUM writes data within the

local data center, where the coordinator received the request.

Another option is to use QUORUM, which calculates the

number of nodes to write synchronously as (total replication

factor all DCs/2 + 1). This can cause an issue with the

availability of remote datacenters in other continents

involved in the QUORUM. EACH_QUORUM can select a

quorum in each data center if the datacenters are within a

geographical region. This guarantees that data is available in

all datacenters within a region. Writing with

EACH_QUORUM is beneficial when data consumers are

distributed in datacenters within a region. These consumers

can read data with a consistency level as LOCAL_ONE from

any of the datacenters, and data availability will be

guaranteed. The same can be achieved when the

LOCAL_QUORUM is used as the consistency level, but the

read should be within the same data center with the

LOCAL_ONE consistency level to guarantee data

availability. Consistency level is the key lever to tune, which

can shift the balance between consistency and availability of

the CAP theorem. Other consistency levels exist, such as the

number of nodes or ALL. This means the specified number

of nodes or all nodes should accept writes, or if it is used for

reads, many nodes should respond for reads. So, the greater

the number of nodes involved in writes or reads, availability

will be sacrificed, but higher consistency is guaranteed. This

is where the consistency level used in the application and

replication factor on the keyspace should be carefully chosen

to balance between availability and consistency.

4.7. Repairs

Cassandra guarantees eventual consistency, which

means data will be consistent eventually across the cluster.

When there are no network issues and nodes are not down or

not overloaded, data will replicate to replica nodes as it is

supposed to. This is an ideal situation where everything

works in perfect harmony, but that is practically impossible.

There will be some network issues in the data center, and

nodes may be down because of performance issues or

scheduled maintenance. So, the Cassandra repair process

triggers the comparison of the data across replicas [19] and

streams the latest data from nodes to other nodes where there

is stale data. Tools such as Cassandra Reaper schedule

repairs automatically and use cluster resources efficiently.

There are two types of repairs: incremental and full repairs.

Incremental repairs should be done regularly, and full repairs

can be done occasionally. Repairs are important to keep the

data consistent across the cluster, so extra attention should be

given to this.

4.8. Compaction

As mentioned in the architecture overview, data from

Memtables gets flushed as SSTables to the disk. Cassandra

SSTables are immutable, so once the data is written to the

SSTable, its contents cannot be changed, but a new SSTable

can be created by merging multiple SSTables. This process

of merging SSTables is called compaction. A few

compaction strategies are available in Cassandra, so

depending on the data type and Time to Live configured on

the table, the correct compaction strategy should be chosen

for the optimal compaction. Compaction is a CPU-intensive

Venugopal Thati / IJCTT, 71(9), 15-21, 2023

18

process; more threads can be assigned to complete

compaction quickly if the CPU is available on the node.

4.9. Mutation Size

This size defines the max cell value in Cassandra, which

is half the size of the commit log segment size, 32MB. By

default, the mutation size is 16MB, so anything more than

this size in a cell cannot be written to Cassandra. Attention

should be given to the amount of data inserted in each cell.

Suppose an application is required to insert a large data size

in each cell. In that case, the clustering key can help to split

the data into small chunks within a partition, but the

application should stitch the data back once the data is

retrieved for the entire partition. This way, the single

partition can accommodate large data sizes. However, the

general recommendation is to keep the partition size to 5 to

10MB for the optimal performance of the cluster [14].

4.10. Garbage Collection

Cassandra runs in JVM (Java virtual machine), so

configurations should be tuned to allocate the right amount

of Heap. Several JVM configurations can be tuned for writes

and read [15]. It should be investigated if there are full

garbage collection cycles or if garbage collection itself takes

more than 100ms. For the efficient operation of the cluster,

garbage collection should happen fast; otherwise, it is a sign

that the cluster is overloaded and there are bad read queries

pulling a lot of data. Garbage collection logs should be

enabled in production to analyze them regularly to identify

any bottlenecks, which gives an early sign if issues are

building up.

4.11. Failover

Cassandra requires a contact point list on the client to

establish a connection with the cluster. In Cassandra java

driver version 3.x, DCAwareRoundRobinPolicy includes

contact points from the local data center and configured

number of servers per remote data center. So, if all nodes in

the local data center are down, the client will try to connect

to the remote data center. The problem with this approach is

that if the remote DC is in a different geographical region

and the consistency level is strict enough to require nodes

from all datacenters to be available, the client will see issues

performing read/write operations.

It has been recommended to have the failover at the

infrastructure level, and Cassandra java driver version 4.x

removed DCAwareRoundRobinPolicy and

DefaultLoadBalancingPolicy is preferred to be used on the

client side [13]. DefaultLoadBalancingPolicy lists nodes only

from the local data center. The type of failover approach and

consistency level dictates the application behavior if any data

center were to go down. This topic should be given enough

attention for production deployments, which dictates the

application's availability in case of disasters.

4.12. Networking

Cassandra uses a gossip protocol to communicate the

cluster state with other nodes in the cluster because of its

distributed design. This is how nodes will be marked up or

down in the cluster. Coordinator nodes communicate with

other nodes in the cluster during read and write paths.

Having a stable network connection between the nodes in the

Cassandra cluster is very important for the healthy operation

of the cluster. There can be network issues between clients

and the Cassandra cluster itself. Sometimes, client-side errors

can be misleading when some nodes are not reachable. In

production, network issues between the client and the

Cassandra cluster may raise false alarms, which can lead to

the conclusion that the Cassandra cluster is unstable. So, it is

important for node-to-node networking to function properly

within the cluster and node-to-client connectivity is also

functioning correctly.

4.13. Disk

Cassandra requires fast disk storage for the performance

and reliability of the Cassandra database highly depend on

the disk type used and configurations. By design, high write

throughputs are supported by Cassandra, so the disk should

support high I/O operations. At least 40 to 50% of the disk

should be free on each node because the compaction process

requires additional temp storage. If the nodes are reaching

60% of the disk capacity, it is time to add more nodes to the

cluster to increase the disk capacity of the cluster. Proper

monitoring must be in place to check the disk size, as the

disk is one of the most important things in the Cassandra

cluster and helps achieve the reliability and availability

required for global applications.

4.14. Time to Live (TTL)

Time to live is an optional configuration in Cassandra

that dictates how long data is going to be kept from the right

time. Data will expire once the TTL is reached, and a

tombstone will be created, but it will be available for clients

to query until the GC grace period. TTL can be applied at the

table level or during the write time. Which approach to use

depends on the application requirement. However, it is

preferable to set it at the table level as an application usually

writes data to one table, making it easier to have consistent

TTL for all records in a table. Expired data will be removed

from SSTable during the compaction process.

4.15. Tombstones

Tombstone is a marker used in Cassandra to mark

deletions or expired data. The compaction process removes

tombstones from SSTables after the GC grace period. For the

optimal operation of the cluster, having fewer tombstones is

very important. Otherwise, performance issues will affect

queries and availability of the application. Common pitfalls

to avoid are writing null values in cells from the application

and deleting queries.

Venugopal Thati / IJCTT, 71(9), 15-21, 2023

19

Table 1. Test results using the cassandra stress test tool on a 3-node cassandra cluster

4.16. Backups

Cassandra allows us to take a snapshot of a table at a

point in time or take the incremental backup whenever

Memtables are flushed to disk as SSTables. Snapshots and

incremental backups can be paired to save disk space while

taking backups. It is critical to take backups of the business-

critical data or cluster backups. In case of data loss or

corruption, it is beneficial to have a backup copy to restore it

easily. Once backups are created using snapshot or

incremental, backups can be moved to a location outside of

the cluster to save disk space on the cluster.

4.17. Number of Nodes

The number of nodes in the cluster is an important factor

in achieving the required performance. Peaking CPU and

memory of the nodes continuously as an indicator to add

more nodes to the cluster. Also, as mentioned earlier, if disks

in the cluster reach 60% of the capacity, new nodes should be

added to increase the cluster capacity. If clients report

slowness or failures with reads and write intermittently and

the network seems stable in the data center, it is time to scale

the cluster. Proper planning should be done in advance to add

more nodes if there is an expected demand soon, otherwise

putting more load on the cluster will affect the overall

performance of the Cassandra database and affect

availability.

4.18. Monitoring and Metrics

Finally, Cassandra provides various metrics [18], which

can be scraped with Prometheus and visualized in Grafana,

and monitors can be setup on these metrics. It is important to

measure and observe write loads across the cluster, GC

durations, write and rate latencies, Memtable sizes and

Cassandra table sizes with these metrics and decide on

scaling the cluster or tuning the cluster for optimal

performance.

5. Results and Discussion
Tests were conducted on a Cassandra 3-node cluster;

each node has 4 CPUs, 16GB memory and 500GB disk.

Cassandra stress tool [17] was used to test writes and reads

with 50 threads; 1 million records are used in each test, with

varied levels of consistency, keeping all nodes up and

bringing one down in the cluster as well. Keyspace was

created in advance, and the replication factor was set to 3 to

replicate data across 3 nodes in the cluster. It is clear from

the test results listed in Table 1 that the write and read

performance decreases with stronger consistency. Table 1

contains various combinations' results that provide insights

into the client and Cassandra's behavior. As shown in Figure

1, write operations per second are reduced as the consistency

level increases from one to all (weaker to stronger

consistency). This is the reason consistency should be tuned

properly for better performance. When one node is down in

the cluster, write performance still follows the downward

trend with the stronger consistency level, but with all

consistency levels, write operations count came down to 0.

This explains that all consistency levels, which are the

strongest, make the database unavailable for application even

with one node down in the cluster. This also justifies the

CAP theorem, as consistency and availability act in the

opposite direction.

Read/Write
Replication

Factor

Number

of up nodes

Consistency

Level
Ops/sec

Mean

Latency (ms)

Total

Time (secs)

Write 3 3 one 12,183 4.1 milli secs 82 secs

Write 3 3 local_quorum 11,511 4.3 milli secs 86 secs

Write 3 3 all 10,801 4.6 milli secs 92 secs

Write 3 2 one 14,842 3.3 milli secs 67 secs

Write 3 2 local_quorum 9,475 5.2 milli secs 105 secs

Write 3 2 all Failure Failure Failure

Read 3 3 one 14,614 3.4 milli secs 68 secs

Read 3 3 local_quorum 9,820 5.1 milli secs 101 secs

Read 3 3 all 9,155 5.4 milli secs 109 secs

Read 3 2 one 13,404 3.7 milli secs 74 secs

Read 3 2 local_quorum 8,451 5.9 milli secs 118 secs

Read 3 2 all Failure Failure Failure

Venugopal Thati / IJCTT, 71(9), 15-21, 2023

20

Fig. 1 Writes with all nodes up in the cluster

Fig. 2 Writes with one node down in the cluster

Fig. 3 Reads with all nodes up the cluster

Fig. 4 Reads with one node down in the cluster

Similar performance results are observed with reading

tests as well. As the consistency level is increased, there is a

decrease in operations per second. With the strongest

consistency, when one node is down, the read operation

count is 0, resembling an application outage. These tests

conclude the key aspect of the Cassandra database,

consistency vs. availability and how it affects the availability

of an application. Also, it shows how Cassandra continues to

serve application requests even when one of the nodes is

down in the cluster.

6. Conclusion
The above-listed important topics and observations from

the test results will help to take steps to achieve optimal

performance. However, the Cassandra database has many

other configurations that can be tuned based on operational

needs. Proper monitoring should be in place to observe key

performance metrics, and continuous tuning is required to

achieve better performance. As with any other production

system, the more we invest in improving reliability

availability, the better the results will be.

Funding Statement
 There was no external funding obtained to prepare this

article. This article was written in the author’s personal time

and practical experience gained while working on the

Cassandra database. Tests were conducted on the Cassandra

cluster setup in the GCP cloud with the author’s funding.

References
[1] Abdul Wahid, and Kanupriya Kashyap, “Cassandra-A Distributed Database System: An Overview,” Emerging Technologies in Data

Mining and Information Security, Advances in Intelligent Systems and Computing, vol. 755, pp. 519-526, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Pedro Martins et al., NoSQL Comparative Performance Study, Trends and Applications in Information Systems and Technologies,

WorldCIST 2021, Advances in Intelligent Systems and Computing, vol. 1366, pp. 428-438, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Guoxi Wang, and Jianfeng Tang, “The NoSQL Principles and Basic Application of Cassandra Model,” 2012 International Conference

on Computer Science and Service System, pp. 1332-1335, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[4] Avinash Lakshman, and Prashant Malik, “Cassandra: A Decentralized Structured Storage System,” ACM SIGOPS Operating Systems

Review, vol. 44, no. 2, pp. 35-40, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[5] Muh. Rafif Murazza, and Arif Nurwidyantoro, “Cassandra and SQL Database Comparison for Near Real-Time Twitter Data

Warehouse,” 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 195-200, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.1007/978-981-13-1951-8_47
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cassandra-A+Distributed+Database+System%3A+An+Overview&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cassandra-A+Distributed+Database+System%3A+An+Overview&btnG=
https://link.springer.com/chapter/10.1007/978-981-13-1951-8_47
https://doi.org/10.1007/978-3-030-72651-5_41
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=NoSQL+Comparative+Performance+Study&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-72651-5_41
https://doi.org/10.1109/CSSS.2012.336
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+NoSQL+Principles+and+Basic+Application+of+Cassandra+Model&btnG=
https://ieeexplore.ieee.org/abstract/document/6394574
https://doi.org/10.1145/1773912.1773922
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cassandra%3A+a+decentralized+structured+storage+system&btnG=
https://dl.acm.org/doi/abs/10.1145/1773912.1773922
https://doi.org/10.1109/ISITIA.2016.7828657
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cassandra+and+Sql+Database+Comparison+for+Near+Real-Time+Twitter+Data+Warehouse&btnG=
https://ieeexplore.ieee.org/abstract/document/7828657

Venugopal Thati / IJCTT, 71(9), 15-21, 2023

21

[6] Giuseppe Baruffa et al., “Comparison of MongoDB and Cassandra Databases for Spectrum Monitoring As-a-Service,” IEEE

Transactions on Network and Service Management, vol. 17, no. 1, pp. 346-360, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[7] Vishal Dilipbhai Jogi, and Ashay Sinha, “Performance Evaluation of MySQL, Cassandra and HBase for Heavy Write Operation,” 2016

3rd International Conference on Recent Advances in Information Technology (RAIT), pp. 586-590, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Shubham Dhingra et al., “Fault Tolerant Streaming of Live News Using Multi-Node Cassandra,” 2017 Tenth International Conference

on Contemporary Computing (IC3), pp. 1-5, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[9] Katalin Ferencz, and József Domokos, “IoT Sensor Data Acquisition and Storage System Using Raspberry Pi and Apache Cassandra,”

2018 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), pp. 143-146, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[10] Gautam Pal, Gangmin Li, and Katie Atkinson, “Near Real-Time Big Data Stream Processing Platform Using Cassandra,” 2018 4th

International Conference for Convergence in Technology (I2CT), pp. 1-7, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] Cassandra Documentation, Ensure Keyspaces are Created with Network Topology Strategy, Apache Cassandra. [Online]. Available:

https://cassandra.apache.org/doc/4.1/cassandra/getting_started/production.html#ensure-keyspaces-are-created-with-

networktopologystrategy

[12] Cassandra Documentation, Tunable Consistency, Apache Cassandra. [Online]. Available:

https://cassandra.apache.org/doc/latest/cassandra/architecture/dynamo.html#tunable-consistency

[13] Load Balancing, DataStax Documentation. [Online]. Available: https://docs.datastax.com/en/developer/java-

driver/4.2/manual/core/load_balancing/

[14] Cassandra Optimal Partition Size, Stackoverflow. [Online]. Available: https://stackoverflow.com/questions/69282435/cassandra-

optimal-partition-size

[15] Garbage Collection Tuning for Apache Cassandra, The Last Pickle, 2018. [Online]. Available:

https://thelastpickle.com/blog/2018/04/11/gc-tuning.html

[16] Wide-Column Store, Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Wide-column_store

[17] Cassandra Stress, Cassandra Documentation, Apache Cassandra. [Online]. Available:

https://cassandra.apache.org/doc/latest/cassandra/tools/cassandra_stress.html

[18] Cassandra, Operating, Metrics, Cassandra Documentation, Apache Cassandra. [Online]. Available:

https://cassandra.apache.org/doc/latest/cassandra/operating/metrics.html

[19] Repair, Cassandra Documentation, Apache Cassandra. [Online]. Available:

https://cassandra.apache.org/doc/latest/cassandra/operating/repair.html

https://doi.org/10.1109/TNSM.2019.2942475
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparison+of+MongoDB+and+Cassandra+Databases+for+Spectrum+Monitoring+As-a-Service&btnG=
https://ieeexplore.ieee.org/abstract/document/8844790
https://doi.org/10.1109/RAIT.2016.7507964
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+evaluation+of+MySQL%2C+Cassandra+and+HBase+for+heavy+write+operation&btnG=
https://ieeexplore.ieee.org/abstract/document/7507964
https://doi.org/10.1109/IC3.2017.8284310
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+tolerant+streaming+of+live+news+using+multi-node+Cassandra&btnG=
https://ieeexplore.ieee.org/abstract/document/8284310
https://doi.org/10.1109/CANDO-EPE.2018.8601139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT+Sensor+Data+Acquisition+and+Storage+System+Using+Raspberry+Pi+and+Apache+Cassandra&btnG=
https://ieeexplore.ieee.org/abstract/document/8601139
https://doi.org/10.1109/I2CT42659.2018.9058101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Near+Real-Time+Big+Data+Stream+Processing+Platform+Using+Cassandra&btnG=
https://ieeexplore.ieee.org/abstract/document/9058101

